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It is shown that the problem of electron localization in a random potential is formally equivalent to the
problem of finding a bound state in a shallow potential well.

Recently, significant advances have been made"? in
understanding Anderson’s localization in disordered sys-
tems. Much of the work has been based on the idea® that
the extended or localized nature of the eigenstates can be
determined by a single scaling variable, the dimensionless
conductance g(L) of a system of length L. By assuming
that the quantity 8(g)=d Ing/d InL, which describes the
length dependence of g, is a monotonic and nonsingular
function of g only, one obtains that g — 0 as L — oo for
any disordered system of dimensionality lower or equal to
two.

A self-consistent perturbation theory* has been developed
for the localization problem which gives results in agree-
ment with scaling theory. The conductance g obeys a scaling
equation as proposed by Abrahams ef al.! for all dimensions
d.

It has been shown,* within the weak-scattering limit, that
the frequency-dependent diffusion coefficient D (w) in the
long-wavelength limit (g — 0) is given by
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where Dy is the bare diffusion constant, which is related
with the conductivity o¢ by the Einstein relation
ao=2e2Dgp. Here p is the density of states (DOS) per spin
per unit volume (area, length), and d is the dimensionality.
The DC conductivity oy in the weak-scattering limit is
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where / is the mean free path and Sr is the Fermi surface.
(For d =2, Sy is the length of the Fermi line, and for d =1,
SF=2.) The upper cutoff gmax=1/L min, where L i, is be-
lieved to be very close to the mean free path /; here we as-
sume Lmin=(D7)"2=1/Vd. The lower cutoff gmin=1/
L max, Where L. is dominated by the shortest of several
upper cutoff lengths which may be present in the system.
Such lengths are the diffusion length during the inelastic re-
laxation time 7; in Ly= (DT,-)”Z, and the diffusion length
during the time w ™!, where o is the frequency of an exter-
nal ac field, L,=(D/w)"? the presence of an external
magnetic field H introduces the cyclotron radius
Ly=(Kc/eH )V

As we have already mentioned, Eq. (1) is correct for the
weak-scattering limit. We can extend it to the strong disor-
der case by substituting4 Dy in the denominator of the
right-hand side of Eq. (1) by D(w). Thus we have a self-
consistent equation for D (w). For extended states and in
the limit w — 0 the self-consistent equation is identical with
Eq. (1) because both «/D(w) and w/D, approach zero.
However, for localized states, w/D (w), in contrast to w/Dy,
does not go to zero. To see this, consider the polarizability
a(w), which is defined by o(w)= —jwa(w) and (for an
insulator) is finite’ in the w— 0 limit. Note that
—iw/D(w) has the dimension of an inverse length square
denoted by ¢£72 It was argued* that £ is the localization
length. This proposal is supported by numerical results® for
o(w) for a one-dimensional disordered system; we found
that these results are not inconsistent with ¢ being the local-
ization length. Therefore we replace —iw/D (w) by £~ % in
the denominator of the integral in Eq. (1) and for o« — 0
obtain that
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The most general way to treat the problem of a bound
state in a potential well is by employing Green’s-function
techniques.® Consider the Hamiltonian H = Ho+ V, where
H is its unperturbed part and V is the potential well. Let
us define the operator G(E)=(E—H)™ !, when E =E,,
where E, is a bound discrete level, G blows up. Thus the
bound levels, if any, will appear as poles of G(£). The
operator G (£) can be expressed as

GE)=(E—Ho— V) 's{(E-H)1—(E—-Hy~'v]}~!
=(1—G()V)aIGQ )

where Go(E) = (E — Hy)~'. The easiest case for an explicit
determination of FE, is when Hj is a tight-binding Hamil-
tonian with one orbital |/) for each lattice site / and when

V=—11)|Vol{/|l. Then it is straightforward to show?® that
E, will be solution of the equation
— (I Go(E )| Vol=1 . (3)

By introducing the eigenstates of Ho, {|k)}, we can reex-
press Gy as

Go(E)=(E—Ho)'= 3)k)(k|(E~E)™!
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The summation over k can be transformed to an integration
over k. The eigenvalues E; near the lower band edge E;
have a quadratic dependence on k, Ex=E;+#%?/2m* and
Ey=E —#%¢/2m*, so that we can recast Eq. (3) as fol-
lows®:
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where kp is the inverse of the localization length of the
bound state, and Q is the volume of the primitive lattice
cell. An appropriate upper cutoff is needed in Eq. (4) [as
well as in Eq. (2)] to account for the fact that the quadratic
dependence on k (or g) is valid only for small k (or g). An
equation of the same form as Eq. (4) determines the bound
state for the continuous case.® Note that Eq. (4), which
solves the problem of finding the bound levels in an exter-
nal potential V, is mathematically equivalent to Eq. (2)
[with the replacement (Q|Vol)~™!' = #moo/e% ]l which
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describes the localization problem. It must be pointed out
that Eq. (4) always gives a bound state,® even for weak
| Vol, provided that d < 2. The same is true for the localiza-
tion problem described by Eq. (2), i.e., all states are local-
ized, even for very weak disorder, provided that d < 2.

The formal equivalence of Egs. (2) and (4) strongly sug-
gests that there may be a direct physical connection between
the problem of localization in disordered systems and that
of a bound level in a single potential well. If such a connec-
tion could be established, it would definitely contribute to
our understanding of the localization mechanism in disor-
dered media. A possible way (which we currently explore)
for establishing the physical equivalence of the two prob-
lems is by employing Edward’s’ path integral formulation.?
The latter may allow the rigorous mapping of the localiza-
tion problem to that of a bound level in a self-consistently
determined potential well. Then it may be possible to con-
nect this effective potential well to the quantity o, estab-
lishing thus the desired equivalence.
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